Skip to content

Enhance Applications Non-Intrusively with Operators

Currently, only Java, Node.js, Python, .NET, and Golang support non-intrusive integration through the Operator approach.

Prerequisites

Please ensure that the insight-agent is ready. If not, please refer to Install insight-agent for data collection and make sure the following three items are ready:

  • Enable trace functionality for insight-agent
  • Check if the address and port for trace data are correctly filled
  • Ensure that the Pods corresponding to deployment/insight-agent-opentelemetry-operator and deployment/insight-agent-opentelemetry-collector are ready

Install Instrumentation CR

Tip

Starting from Insight v0.22.0, there is no longer a need to manually install the Instrumentation CR.

Install it in the insight-system namespace. There are some minor differences between different versions.

K8S_CLUSTER_UID=$(kubectl get namespace kube-system -o jsonpath='{.metadata.uid}')
kubectl apply -f - <<EOF
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
  name: insight-opentelemetry-autoinstrumentation
  namespace: insight-system
spec:
  # https://github.com/open-telemetry/opentelemetry-operator/blob/main/docs/api.md#instrumentationspecresource
  resource:
    addK8sUIDAttributes: true
  env:
    - name: OTEL_EXPORTER_OTLP_ENDPOINT
      value: http://insight-agent-opentelemetry-collector.insight-system.svc.cluster.local:4317
  sampler:
    # Enum: always_on, always_off, traceidratio, parentbased_always_on, parentbased_always_off, parentbased_traceidratio, jaeger_remote, xray
    type: always_on
  java:
    image: ghcr.m.daocloud.io/openinsight-proj/autoinstrumentation-java:1.31.0
    env:
      - name: OTEL_JAVAAGENT_DEBUG
        value: "false"
      - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
        value: "true"
      - name: SPLUNK_PROFILER_ENABLED
        value: "false"
      - name: OTEL_METRICS_EXPORTER
        value: "prometheus"
      - name: OTEL_METRICS_EXPORTER_PORT
        value: "9464"
      - name: OTEL_K8S_CLUSTER_UID
        value: $K8S_CLUSTER_UID
  nodejs:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.41.1
  python:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.40b0
  dotnet:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-dotnet:1.0.0
  go:
    # Must set the default value manually for now.
    # See https://github.com/open-telemetry/opentelemetry-operator/issues/1756 for details.
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-go-instrumentation/autoinstrumentation-go:v0.2.2-alpha
EOF
kubectl apply -f - <<EOF
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
  name: insight-opentelemetry-autoinstrumentation
  namespace: insight-system
spec:
  # https://github.com/open-telemetry/opentelemetry-operator/blob/main/docs/api.md#instrumentationspecresource
  resource:
    addK8sUIDAttributes: true
  env:
    - name: OTEL_EXPORTER_OTLP_ENDPOINT
      value: http://insight-agent-opentelemetry-collector.insight-system.svc.cluster.local:4317
  sampler:
    # Enum: always_on, always_off, traceidratio, parentbased_always_on, parentbased_always_off, parentbased_traceidratio, jaeger_remote, xray
    type: always_on
  java:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java:1.29.0
    env:
      - name: OTEL_JAVAAGENT_DEBUG
        value: "false"
      - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
        value: "true"
      - name: SPLUNK_PROFILER_ENABLED
        value: "false"
      - name: OTEL_METRICS_EXPORTER
        value: "prometheus"
      - name: OTEL_METRICS_EXPORTER_PORT
        value: "9464"
  nodejs:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.41.1
  python:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.40b0
  dotnet:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-dotnet:1.0.0-rc.2
  go:
    # Must set the default value manually for now.
    # See https://github.com/open-telemetry/opentelemetry-operator/issues/1756 for details.
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-go-instrumentation/autoinstrumentation-go:v0.2.2-alpha
EOF
kubectl apply -f - <<EOF
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
  name: insight-opentelemetry-autoinstrumentation
  namespace: insight-system
spec:
  # https://github.com/open-telemetry/opentelemetry-operator/blob/main/docs/api.md#instrumentationspecresource
  resource:
    addK8sUIDAttributes: true
  env:
    - name: OTEL_EXPORTER_OTLP_ENDPOINT
      value: http://insight-agent-opentelemetry-collector.insight-system.svc.cluster.local:4317
  sampler:
    # Enum: always_on, always_off, traceidratio, parentbased_always_on, parentbased_always_off, parentbased_traceidratio, jaeger_remote, xray
    type: always_on
  java:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java:1.25.0
    env:
      - name: OTEL_JAVAAGENT_DEBUG
        value: "false"
      - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
        value: "true"
      - name: SPLUNK_PROFILER_ENABLED
        value: "false"
      - name: OTEL_METRICS_EXPORTER
        value: "prometheus"
      - name: OTEL_METRICS_EXPORTER_PORT
        value: "9464"
  nodejs:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.37.0
  python:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.38b0
  go:
    # Must set the default value manually for now.
    # See https://github.com/open-telemetry/opentelemetry-operator/issues/1756 for details.
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-go-instrumentation/autoinstrumentation-go:v0.2.1-alpha
EOF
kubectl apply -f - <<EOF
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
  name: insight-opentelemetry-autoinstrumentation
  namespace: insight-system
spec:
  # https://github.com/open-telemetry/opentelemetry-operator/blob/main/docs/api.md#instrumentationspecresource
  resource:
    addK8sUIDAttributes: true
  env:
    - name: OTEL_EXPORTER_OTLP_ENDPOINT
      value: http://insight-agent-opentelemetry-collector.insight-system.svc.cluster.local:4317
  sampler:
    # Enum: always_on, always_off, traceidratio, parentbased_always_on, parentbased_always_off, parentbased_traceidratio, jaeger_remote, xray
    type: always_on
  java:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java:1.23.0
    env:
      - name: OTEL_JAVAAGENT_DEBUG
        value: "false"
      - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
        value: "true"
      - name: SPLUNK_PROFILER_ENABLED
        value: "false"
      - name: OTEL_METRICS_EXPORTER
        value: "prometheus"
      - name: OTEL_METRICS_EXPORTER_PORT
        value: "9464"
  nodejs:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.34.0
  python:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.33b0
EOF
kubectl apply -f - <<EOF
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
  name: insight-opentelemetry-autoinstrumentation
  namespace: insight-system
spec:
  # https://github.com/open-telemetry/opentelemetry-operator/blob/main/docs/api.md#instrumentationspecresource
  resource:
    addK8sUIDAttributes: true
  env:
    - name: OTEL_EXPORTER_OTLP_ENDPOINT
      value: http://insight-agent-opentelemetry-collector.insight-system.svc.cluster.local:4317
  sampler:
    # Enum: always_on, always_off, traceidratio, parentbased_always_on, parentbased_always_off, parentbased_traceidratio, jaeger_remote, xray
    type: always_on
  java:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java:1.23.0
    env:
      - name: OTEL_JAVAAGENT_DEBUG
        value: "false"
      - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
        value: "true"
      - name: SPLUNK_PROFILER_ENABLED
        value: "false"
      - name: OTEL_METRICS_EXPORTER
        value: "prometheus"
      - name: OTEL_METRICS_EXPORTER_PORT
        value: "9464"
  nodejs:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.34.0
  python:
    image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.33b0
EOF

Works with the Service Mesh Product (Mspider)

If you enable the tracing capability of the Mspider(Service Mesh), you need to add an additional environment variable injection configuration:

The operation steps are as follows

  1. Log in to DCE5.0, then enter Container Management and select the target cluster.
  2. Click CRDs in the left navigation bar, find instrumentations.opentelemetry.io, and enter the details page.
  3. Select the insight-system namespace, then edit insight-opentelemetry-autoinstrumentation, and add the following content under spec:env::

        - name: OTEL_SERVICE_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.labels['app'] 
    

    The complete example (for Insight v0.21.x) is as follows:

    K8S_CLUSTER_UID=$(kubectl get namespace kube-system -o jsonpath='{.metadata.uid}')
    kubectl apply -f - <<EOF
    apiVersion: opentelemetry.io/v1alpha1
    kind: Instrumentation
    metadata:
      name: insight-opentelemetry-autoinstrumentation
      namespace: insight-system
    spec:
      # https://github.com/open-telemetry/opentelemetry-operator/blob/main/docs/api.md#instrumentationspecresource
      resource:
        addK8sUIDAttributes: true
      env:
        - name: OTEL_EXPORTER_OTLP_ENDPOINT
          value: http://insight-agent-opentelemetry-collector.insight-system.svc.cluster.local:4317
        - name: OTEL_SERVICE_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.labels['app'] 
      sampler:
        # Enum: always_on, always_off, traceidratio, parentbased_always_on, parentbased_always_off, parentbased_traceidratio, jaeger_remote, xray
        type: always_on
      java:
        image: ghcr.m.daocloud.io/openinsight-proj/autoinstrumentation-java:1.31.0
        env:
          - name: OTEL_JAVAAGENT_DEBUG
            value: "false"
          - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
            value: "true"
          - name: SPLUNK_PROFILER_ENABLED
            value: "false"
          - name: OTEL_METRICS_EXPORTER
            value: "prometheus"
          - name: OTEL_METRICS_EXPORTER_PORT
            value: "9464"
          - name: OTEL_K8S_CLUSTER_UID
            value: $K8S_CLUSTER_UID
      nodejs:
        image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.41.1
      python:
        image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.40b0
      dotnet:
        image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-dotnet:1.0.0
      go:
        # Must set the default value manually for now.
        # See https://github.com/open-telemetry/opentelemetry-operator/issues/1756 for details.
        image: ghcr.m.daocloud.io/open-telemetry/opentelemetry-go-instrumentation/autoinstrumentation-go:v0.2.2-alpha
    EOF
    

Add annotations to automatically access traces

After the above is ready, you can access traces for the application through annotations (Annotation). Otel currently supports accessing traces through annotations. Depending on the service language, different pod annotations need to be added. Each service can add one of two types of annotations:

  • Only inject environment variable annotations

    There is only one such annotation, which is used to add otel-related environment variables, such as link reporting address, cluster id where the container is located, and namespace (this annotation is very useful when the application does not support automatic probe language)

    instrumentation.opentelemetry.io/inject-sdk: "insight-system/insight-opentelemetry-autoinstrumentation"
    

    The value is divided into two parts by /, the first value (insight-system) is the namespace of the CR installed in the previous step, and the second value (insight-opentelemetry-autoinstrumentation) is the name of the CR.

  • Automatic probe injection and environment variable injection annotations

    There are currently 4 such annotations, corresponding to 4 different programming languages: java, nodejs, python, dotnet. After using it, automatic probes and otel default environment variables will be injected into the first container under spec.pod:

    instrumentation.opentelemetry.io/inject-java: "insight-system/insight-opentelemetry-autoinstrumentation"
    
    instrumentation.opentelemetry.io/inject-nodejs: "insight-system/insight-opentelemetry-autoinstrumentation"
    
    instrumentation.opentelemetry.io/inject-python: "insight-system/insight-opentelemetry-autoinstrumentation"
    
    instrumentation.opentelemetry.io/inject-dotnet: "insight-system/insight-opentelemetry-autoinstrumentation"
    

    Since Go's automatic detection requires the setting of OTEL_GO_AUTO_TARGET_EXE, you must provide a valid executable path through annotations or Instrumentation resources. Failure to set this value will result in the termination of Go's automatic detection injection, leading to a failure in the connection trace.

    instrumentation.opentelemetry.io/inject-go: "insight-system/insight-opentelemetry-autoinstrumentation"
    instrumentation.opentelemetry.io/otel-go-auto-target-exe: "/path/to/container/executable"
    

    Go's automatic detection also requires elevated permissions. The following permissions are automatically set and are necessary.

    securityContext:
      privileged: true
      runAsUser: 0
    

Tip

The OpenTelemetry Operator automatically adds some OTel-related environment variables when injecting probes and also supports overriding these variables. The priority order for overriding these environment variables is as follows:

original container env vars -> language specific env vars -> common env vars -> instrument spec configs' vars

However, it is important to avoid manually overriding OTEL_RESOURCE_ATTRIBUTES_NODE_NAME . This variable serves as an identifier within the operator to determine if a pod has already been injected with a probe. Manually adding this variable may prevent the probe from being injected successfully.

Automatic injection Demo

Note that the annotation is added under spec.annotations.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
  labels:
    app: my-app
spec:
  selector:
    matchLabels:
      app: my-app
  replicas: 1
  template:
    metadata:
      labels:
        app: my-app
      annotations:
        instrumentation.opentelemetry.io/inject-java: "insight-system/insight-opentelemetry-autoinstrumentation"
    spec:
      containers:
      - name: myapp
        image: jaegertracing/vertx-create-span:operator-e2e-tests
        ports:
          - containerPort: 8080
            protocol: TCP

The final generated YAML is as follows:

apiVersion: v1
kind: Pod
metadata:
  name: my-deployment-with-sidecar-565bd877dd-nqkk6
  generateName: my-deployment-with-sidecar-565bd877dd-
  namespace: default
  uid: aa89ca0d-620c-4d20-8bc1-37d67bad4ea4
  resourceVersion: '2668986'
  creationTimestamp: '2022-04-08T05:58:48Z'
  labels:
    app: my-pod-with-sidecar
    pod-template-hash: 565bd877dd
  annotations:
    cni.projectcalico.org/containerID: 234eae5e55ea53db2a4bc2c0384b9a1021ed3908f82a675e4a92a49a7e80dd61
    cni.projectcalico.org/podIP: 192.168.134.133/32
    cni.projectcalico.org/podIPs: 192.168.134.133/32
    instrumentation.opentelemetry.io/inject-java: "insight-system/insight-opentelemetry-autoinstrumentation"
spec:
  volumes:
    - name: kube-api-access-sp2mz
      projected:
        sources:
          - serviceAccountToken:
              expirationSeconds: 3607
              path: token
          - configMap:
              name: kube-root-ca.crt
              items:
                - key: ca.crt
                  path: ca.crt
          - downwardAPI:
              items:
                - path: namespace
                  fieldRef:
                    apiVersion: v1
                    fieldPath: metadata.namespace
        defaultMode: 420
    - name: opentelemetry-auto-instrumentation
      emptyDir: {}
  initContainers:
    - name: opentelemetry-auto-instrumentation
      image: >-
        ghcr.m.daocloud.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java
      command:
        - cp
        - /javaagent.jar
        - /otel-auto-instrumentation/javaagent.jar
      resources: {}
      volumeMounts:
        - name: opentelemetry-auto-instrumentation
          mountPath: /otel-auto-instrumentation
        - name: kube-api-access-sp2mz
          readOnly: true
          mountPath: /var/run/secrets/kubernetes.io/serviceaccount
      terminationMessagePath: /dev/termination-log
      terminationMessagePolicy: File
      imagePullPolicy: Always
  containers:
    - name: myapp
      image: ghcr.io/pavolloffay/spring-petclinic:latest
      env:
        - name: OTEL_JAVAAGENT_DEBUG
          value: 'true'
        - name: OTEL_INSTRUMENTATION_JDBC_ENABLED
          value: 'true'
        - name: SPLUNK_PROFILER_ENABLED
          value: 'false'
        - name: JAVA_TOOL_OPTIONS
          value: ' -javaagent:/otel-auto-instrumentation/javaagent.jar'
        - name: OTEL_TRACES_EXPORTER
          value: otlp
        - name: OTEL_EXPORTER_OTLP_ENDPOINT
          value: http://insight-agent-opentelemetry-collector.svc.cluster.local:4317
        - name: OTEL_EXPORTER_OTLP_TIMEOUT
          value: '20'
        - name: OTEL_TRACES_SAMPLER
          value: parentbased_traceidratio
        - name: OTEL_TRACES_SAMPLER_ARG
          value: '0.85'
        - name: SPLUNK_TRACE_RESPONSE_HEADER_ENABLED
          value: 'true'
        - name: OTEL_SERVICE_NAME
          value: my-deployment-with-sidecar
        - name: OTEL_RESOURCE_ATTRIBUTES_POD_NAME
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.name
        - name: OTEL_RESOURCE_ATTRIBUTES_POD_UID
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.uid
        - name: OTEL_RESOURCE_ATTRIBUTES_NODE_NAME
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: spec.nodeName
        - name: OTEL_RESOURCE_ATTRIBUTES
          value: >-
            k8s.container.name=myapp,k8s.deployment.name=my-deployment-with-sidecar,k8s.deployment.uid=8de6929d-dda0-436c-bca1-604e9ca7ea4e,k8s.namespace.name=default,k8s.node.name=$(OTEL_RESOURCE_ATTRIBUTES_NODE_NAME),k8s.pod.name=$(OTEL_RESOURCE_ATTRIBUTES_POD_NAME),k8s.pod.uid=$(OTEL_RESOURCE_ATTRIBUTES_POD_UID),k8s.replicaset.name=my-deployment-with-sidecar-565bd877dd,k8s.replicaset.uid=190d5f6e-ba7f-4794-b2e6-390b5879a6c4
        - name: OTEL_PROPAGATORS
          value: jaeger,b3
      resources: {}
      volumeMounts:
        - name: kube-api-access-sp2mz
          readOnly: true
          mountPath: /var/run/secrets/kubernetes.io/serviceaccount
        - name: opentelemetry-auto-instrumentation
          mountPath: /otel-auto-instrumentation
      terminationMessagePath: /dev/termination-log
      terminationMessagePolicy: File
      imagePullPolicy: Always
  restartPolicy: Always
  terminationGracePeriodSeconds: 30
  dnsPolicy: ClusterFirst
  serviceAccountName: default
  serviceAccount: default
  nodeName: k8s-master3
  securityContext:
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
  schedulerName: default-scheduler
  tolerations:
    - key: node.kubernetes.io/not-ready
      operator: Exists
      effect: NoExecute
      tolerationSeconds: 300
    - key: node.kubernetes.io/unreachable
      operator: Exists
      effect: NoExecute
      tolerationSeconds: 300
  priority: 0
  enableServiceLinks: true
  preemptionPolicy: PreemptLowerPriority

Trace query

How to query the connected services, refer to Trace Query.

Comments